top of page

Long live the disk: lifetimes of protoplanetary disks in hierarchical triple star systems and a possible explanation for HD 98800 B

Ronco, Guilera, Cuadra, Miller Bertolami, Cuello et al. 2021

The Astrophysical Journal

The gas dissipation from a protoplanetary disk is one of the key processes affecting planet formation, and it is widely accepted that it happens on timescales of a few million years for disks around single stars. Over the last years, several protoplanetary disks have been discovered in multiple star systems, and despite the complex environment in which they find themselves, some of them seem to be quite old, a situation that may favor planet formation. A clear example of this is the disk around HD 98800 B, a binary in a hierarchical quadruple stellar system, which at a $\sim$10 Myr age seems to still be holding significant amounts of gas. Here we present a 1D+1D model to compute the vertical structure and gas evolution of circumbinary disks in hierarchical triple star systems considering different stellar and disk parameters. We show that tidal torques due to the inner binary together with the truncation of the disk due to the external companion strongly reduce the viscous accretion and expansion of the disk. Even allowing viscous accretion by tidal streams, disks in these kind of environments can survive for more than 10 Myr, depending on their properties, with photoevaporation being the main gas dissipation mechanism. We particularly apply our model to the circumbinary disk around HD 98800 B and confirm that its longevity, along with the current non-existence of a disk around the companion binary HD 98800 A, can be explained with our model and by this mechanism.

HD 143006: circumbinary planet or misaligned disc?

Ballabio, Nealon, Alexander, Cuello et al. 2021

Monthly Notices of the Royal Astronomical Society

Misalignments within protoplanetary discs are now commonly observed, and features such as shadows in scattered light images indicate departure from a co-planar geometry. VLT/SPHERE (Very Large Telescope/Spectro-Polarimetric High-contrast Exoplanet REsearch) observations of the disc around HD 143006 show a large-scale asymmetry and two narrow dark lanes that are indicative of shadowing. ALMA (Atacama Large Millimeter/submillimeter Array) observations also reveal the presence of rings and gaps in the disc, along with a bright arc at large radii. We present new hydrodynamic simulations of HD 143006, and show that a configuration with both a strongly inclined binary and an outer planetary companion is the most plausible to explain the observed morphological features. We compute synthetic observations from our simulations, and successfully reproduce both the narrow shadows and the brightness asymmetry seen in infrared scattered light. Additionally, we reproduce the large dust observed in the mm continuum, due to a 10 Jupiter-mass planet detected in the CO kinematics. Our simulations also show the formation of a circumplanetary disc, which is misaligned with respect to the outer disc. The narrow shadows cast by the inner disc and the planet-induced 'kink' in the disc kinematics are both expected to move on a time-scale of ∼5-10 yr, presenting a potentially observable test of our model. If confirmed, HD 143006 would be the first known example of a circumbinary planet on a strongly misaligned orbit.

A Coplanar Circumbinary Protoplanetary Disk in the TWA 3 Triple M Dwarf System

Czekala, Ribas, Cuello et al. 2021

The Astrophysical Journal

We present sensitive ALMA observations of TWA 3, a nearby, young (∼10 Myr) hierarchical system composed of three pre-main-sequence M3-M4.5 stars. For the first time, we detected 12CO and 13CO J = 2-1 emissions from the circumbinary protoplanetary disk around TWA 3A. We jointly fit the protoplanetary disk velocity field, stellar astrometric positions, and stellar radial velocities to infer the architecture of the system. The Aa and Ab stars (0.29 ± 0.01 M⊙ and 0.24 ± 0.01 M⊙, respectively) comprising the tight (P = 35 days) eccentric (e = 0.63 ± 0.01) spectroscopic binary are coplanar with their circumbinary disk (misalignment <6° with 68% confidence), similar to other short-period binary systems. From models of the spectral energy distribution, we found the inner radius of the circumbinary disk (rinner = 0.50-0.75 au) to be consistent with theoretical predictions of dynamical truncation rcav/ainner ≍ 3. The outer orbit of the tertiary star B (0.40 ± 0.28 M⊙, a ∼ 65 ± 18 au, e = 0.3 ± 0.2) is not as well constrained as the inner orbit; however, orbits coplanar with the A system are still preferred (misalignment < 20°). To better understand the influence of the B orbit on the TWA 3A circumbinary disk, we performed SPH simulations of the system and found that the outer edge of the gas disk (router = 8.5 ± 0.2 au) is most consistent with truncation from a coplanar, circular, or moderately eccentric orbit, supporting the preference from the joint orbital fit.

Radiative Scale Height and Shadows in Protoplanetary Disks

Montesinos, Cuello, Olofsson et al. 2021

The Astrophysical Journal

Planets form in young circumstellar disks called protoplanetary disks. However, it is still difficult to catch planet formation in situ. Nevertheless, from recent ALMA/SPHERE data, encouraging evidence of the direct and indirect presence of embedded planets has been identified in disks around young stars: co-moving point sources, gravitational perturbations, rings, cavities, and emission dips or shadows cast on disks. The interpretation of these observations needs a robust physical framework to deduce the complex disk geometry. In particular, protoplanetary disk models usually assume the gas pressure scale height given by the ratio of the sound speed over the azimuthal velocity H/r = cs/vk. By doing so, radiative pressure fields are often ignored, which could lead to a misinterpretation of the real vertical structure of such disks. We follow the evolution of a gaseous disk with an embedded Jupiter-mass planet through hydrodynamical simulations, computing the disk scale height including radiative pressure, which was derived from a generalization of the stellar atmosphere theory. We focus on the vertical impact of the radiative pressure in the vicinity of circumplanetary disks, where temperatures can reach ≳1000 K for an accreting planet and radiative forces can overcome gravitational forces from the planet. The radiation pressure effects create a vertical, optically thick column of gas and dust at the protoplanet location, casting a shadow in scattered light. This mechanism could explain the peculiar illumination patterns observed in some disks around young stars such as HD 169142 where a moving shadow has been detected or the extremely high aspect ratio H/r ∼ 0.2 observed in systems like AB Aur and CT Cha..

Dust trapping around Lagrangian points in protoplanetary disks

Montesinos, Garrido-Deutelmoser, Olofsson et al. 2020

Astronomy & Astrophysics

Trojans are defined as objects that share the orbit of a planet at the stable Lagrangian points $L_4$ and $L_5$. In the Solar System, these bodies show a broad size distribution ranging from micrometer($\mu$m) to centimeter(cm) particles (Trojan dust) and up to kilometer (km) rocks (Trojan asteroids). It has also been theorized that earth-like Trojans may be formed in extra-solar systems. The Trojan formation mechanism is still under debate, especially theories involving the effects of dissipative forces from a viscous gaseous environment. We perform hydro-simulations to follow the evolution of a protoplanetary disk with an embedded 1--10 Jupiter-mass planet. On top of the gaseous disk, we set a distribution of $\mu$m--cm dust particles interacting with the gas. This allows us to follow dust dynamics as solids get trapped around the Lagrangian points of the planet. We show that large vortices generated at the Lagrangian points are responsible for dust accumulation, where the leading Lagrangian point $L_4$ traps a larger amount of submillimeter (submm) particles than the trailing $L_5$, which traps mostly mm--cm particles. However, the total bulk mass, with typical values of $\sim M_{\rm moon}$, is more significant in $L_5$ than in $L_4$, in contrast to what is observed in the current Solar System a few gigayears later. Furthermore, the migration of the planet does not seem to affect the reported asymmetry between $L_4$ and $L_5$. The main initial mass reservoir for Trojan dust lies in the same co-orbital path of the planet, while dust migrating from the outer region (due to drag) contributes very little to its final mass, imposing strong mass constraints for the in situ formation scenario of Trojan planets.

Spirals, shadows & precession in HD 100453 - II. The hidden companion

Nealon, Cuello, Gonzalez et al. 2020

Monthly Notices of the Royal Astronomical Society

The protoplanetary disc HD 100453 exhibits a curious combination of spirals, shadows and a relative misalignment between the observed outer disc and inferred inner disc. This disc is accompanied by a secondary star on a bound orbit exterior to the disc. Recent observations have suggested there may be an additional low-mass companion residing within the disc inner cavity. In our companion paper the orbit of the secondary was shown to be misaligned by 61○ to the plane of the outer disc. Here we investigate the properties of the inner companion and the origin of the misalignment between the inner and outer disc. Using numerical simulations and synthetic observations, we show that the disc structure and kinematics are consistent with a ≲ 5 MJ planet located at 15 - 20 au. We find that the disc evolution over ∼50 binary orbits (∼105 yrs) is governed by differential precession and to a lesser extent, the Kozai-Lidov effect. In our proposed model the misalignment observed between the outer and inner disc arises naturally as a result of the misaligned outer companion driving the outer disc to precess more rapidly than the inner disc.

Spirals, shadows & precession in HD 100453 - I. The orbit of the binary

Gonzalez, van der Plas, Pinte, Cuello et al. 2020

Monthly Notices of the Royal Astronomical Society

In recent years, several protoplanetary discs have been observed to exhibit spirals, both in scattered light and (sub)millimetre continuum data. The HD 100453 binary star system hosts such a disc around its primary. Previous work has argued that the spirals were caused by the gravitational interaction of the secondary, which was assumed to be on a circular orbit, coplanar with the disc (meaning here the large outer disc, as opposed to the very small inner disc). However, recent observations of the CO gas emission were found incompatible with this assumption. In this paper, we run SPH simulations of the gas and dust disc for seven orbital configurations taken from astrometric fits and compute synthetic observations from their results. Comparing to high-resolution ALMA 12CO data, we find that the best agreement is obtained for an orbit with eccentricity e = 0.32 and semi-major axis a = 207 au, inclined by 61○ relative to the disc plane. The large misalignment between the disc and orbit planes is compatible with the tidal evolution of a circumprimary disc in an eccentric, unequal-mass binary star.

Are the spiral arms in the MWC 758 protoplanetary disc driven by a companion inside the cavity?

Calcino, Christiaens, Price et al. 2020

Monthly Notices of the Royal Astronomical Society

Spiral arms in protoplanetary discs are thought to be linked to the presence of companions. We test the hypothesis that the double spiral arm morphology observed in the transition disc MWC 758 can be generated by an ≍10MJup companion on an eccentric orbit internal to the spiral arms. Previous studies on MWC 758 have assumed an external companion. We compare simulated observations from three-dimensional hydrodynamics simulations of disc-companion interaction to scattered light, infrared and CO molecular line observations, taking into account observational biases. The inner companion hypothesis is found to explain the double spiral arms, as well as several additional features seen in MWC 758 - the arc in the north-west, substructures inside the spiral arms, the cavity in CO isotopologues, and the twist in the kinematics. Testable predictions include detection of fainter spiral structure, detection of a point source south-southeast of the primary, and proper motion of the spiral arms.

Ongoing flyby in the young multiple system UX Tauri

Ménard, Cuello, Ginski et al. 2020

Astronomy & Astrophysics Letters

We present observations of the young multiple system UX Tauri to look for circumstellar disks and for signs of dynamical interactions. We obtained SPHERE/IRDIS deep differential polarization images in the J and H bands. We also used ALMA archival CO data. Large extended spirals are well detected in scattered light coming out of the disk of UX Tau A. The southern spiral forms a bridge between UX Tau A and C. These spirals, including the bridge connecting the two stars, all have a CO (3-2) counterpart seen by ALMA. The disk of UX Tau C is detected in scattered light. It is much smaller than the disk of UX Tau A and has a major axis along a different position angle, suggesting a misalignment. We performed PHANTOM SPH hydrodynamical models to interpret the data. The scattered light spirals, CO emission spirals and velocity patterns of the rotating disks, and the compactness of the disk of UX Tau C all point to a scenario in which UX Tau A has been perturbed very recently (∼1000 years) by the close passage of UX Tau C.

Binary-induced spiral arms inside the disc cavity of AB Aurigae

Poblete, Calcino, Cuello et al. 2020

Monthly Notices of the Royal Astronomical Society

In this work we demonstrate that the inner spiral structure observed in AB Aurigae can be created by a binary star orbiting inside the dust cavity. We find that a companion with a mass-ratio of 0.25, semimajor axis of 40 au, eccentricity of 0.5, and inclination of 90° produces gaseous spirals closely matching the ones observed in 12CO (2-1) line emission. Based on dust dynamics in circumbinary discs (Poblete, Cuello & Cuadra 2019), we constrain the inclination of the binary with respect to the circumbinary disc to range between 60° and 90°. We predict that the stellar companion is located roughly 0.18 arcsec from the central star towards the east-southeast, above the plane of the disc. Should this companion be detected in the near future, our model indicates that it should be moving away from the primary star at a rate of 6 mas yr-1on the plane of the sky. Since our companion is inclined, we also predict that the spiral structure will appear to change with time, and not simply corotate with the companion.

bottom of page